
The Explorer bar: Unifying and improving web navigation

Scott Berkun
Program Manager

One Microsoft Way
Redmond, WA 98052

scottber@microsoft.com

ABSTRACT
The Explorer bar is a component of the Internet Explorer web browser that provides a unified model for web navigation
activities. The user tasks of searching for new sites, visiting favorite sites, and accessing previously viewed sites are
simplified and enhanced by using a single user interface element.

Keywords
Navigation, bookmark, design, hypertext, searching, browsing

INTRODUCTION

The World Wide Web provides access to an enormous
amount of information and resources. The primary usability
issues with using the web involve insufficient support for
helping users find and return to individual web pages. The
Explorer bar was designed to improve these usability
problems by providing a single well designed user interface
model for the most common set of web navigation tasks.

The design problem

Three of the most problematic common end user

tasks on the web are: searching for new web pages,
returning to a bookmarked/favorite page, and returning to a
particular non bookmarked page (Abrahms, D 1997,
Pitkow, J 1996,). For users with existing web browsers
these tasks were often cumbersome, and sometimes
impossible.

Bookmarks or Favorites lists do help the user by
providing a mechanism for remembering pages, but as that
list grows the value of the mechanism decreases (Abrahms,
D. 1997). It is also known that users frequently need to
return to pages that are relatively close in chronological
order but browsers may not be designed to support these
needs (Tauscher, L. 1996).

The design solution
We separated the entire set of web documents into

more digestible groups that users would understand. We
settled on three groupings: web pages the user had not seen
before, web pages the user was interested in, and web pages
the user had visited before. We gave these groupings the
names Search, Favorites and History for easier reference.
As we sketched out different ideas for solutions to the most
common navigation problems, we recognized that there
were strong similarities for how users might interact with
these sets of information.

For example, when searching the web using a
search engine, users received a long list of search results. In
formal and informal usability studies, we observed many
users click on a result link which took them to a new site,
click on several links on that site, and then recognize it was
not the site they wanted. They would then use the back
button repeatedly to return to the list of results and repeat
the process with the next search result. We observed similar
behavior when users were trying to find a particular item in
their Favorites or history lists. The critical problem was a
loss of context. There was no easy way for the user to
return to an important page during a searching process, or
skip between multiple items in their Favorites list to find
the one they needed. This behavior is often referred to as
spoke and hub navigation (Tauscher, L. 1996).

This indicated significant value in representing
these different groups of web pages in a similar way. The
user could then learn a set of concepts once, and apply it to
all of these different types of web pages. We felt if we
developed the right general model for navigating through
lists of items, we could improve the usability of the most
common navigation tasks performed with a web browser.

General model
We started by looking at existing mechanisms (Dennis E.
Egan et al. 1989) for navigating through lists or hierarchies
of information. In particular, we examined the Windows 95
file management utility called Windows explorer. It
displayed a hierarchical view on the leftmost 20% section
of the screen, and a viewing area comprising the remaining
80%. The left area acted as a map or overview for what was
viewed on the right. Clicking on an item in the left section
caused the main area to navigate to the selected item. This
was useful for advanced users who were familiar with the
file system hierarchy.

In the context of web browsing, we found several
problems with Windows explorer design. The hierarchical
view on the left never displayed folder contents. If the user
clicked on a folder, it would navigate the main window to
show a list of the items in that folder. This behavior was
useful for file system maintenance, where the detailed
information of each file is important. However, it forced
the user to frequently navigate away from whatever you
were viewing before.

This problem helped us recognize that we needed
to help the user keep track of the relationship between the
current page they were on, and the page they were trying to
locate. We established a general principle: for web
navigation: the explorer bar should have it’s own context.
The bar would only navigate the main window if the user
clicked on a specific page. If the user clicked on a folder or
group of pages, it would open the folder in place to show
the available pages. This allowed the user to view potential
navigation targets without losing their current place in the
web browser.

Search
Helping users find new web pages was a particularly
problematic area (Pitkow, J 1996). Search results are
provided by the user’s choice of web search provider and
each provider had control over how results were presented
to the user. We knew that we were restricted to providing a
framework for searching to work in, and that to a degree we
were dependent on the providers to do a good job with
much of the searching experience. We worked with the
providers to develop a set of guidelines for search bar
content that they would follow to obtain some level of
consistency.

Figure 1. Searching using the Explorer bar

The first step was to figure out how to compress
search results pages down to a size that would fit in the bar.
We started with a design that could fit 10 search results
inside the Explorer bar, which approximated the number
found on regular search results pages. During our
exploratory tests of a prototype in the usability labs, all five
intermediate participants were able to complete basic
search tasks on the first try using the explorer bar. Tasks
included generating a new query, looking through multiple
results pages, and clicking on different result links. The
limited real estate forced us to leave out result information
such as the URL or sample text. This caused problems in
cases where there were poorly titled pages, and the user had
no way to even guess which page was the best one without
trying them all.

In response to this problem, we enabled an unused
HyperText Markup Language (HTML) attribute called
TITLE, to set the tooltip property for a search result link.
When the user moved their mouse pointer over a search
link, a small window would appear that provided additional
information, such as file size, Internet address, or text
abstract. This helped offset the small screen real estate
available to the bar, and helped users decide what link to
use before clicking on it. We saw evidence that when
noticed, the tooltips improved user performance, however 2
of the 8 subjects did not even notice the tooltips. In all
cases users were still able to complete their tasks, but
without discovering the tooltips some tasks took longer.
We accepted this as a reasonable tradeoff since we needed
to balance the number of results we could fit, with how
much information we could expose for each result. Tooltips
were the only option we knew of that didn’t consume more

real estate.
 The toolbar area of the search bar provided a

‘next provider’ button that allows the user to recast the
current query to a different search provider without
retyping, increasing the speed of using multiple sources.
We also provided a “new search” button that when clicked
showed the user a list of available types of searches,
grouped by task instead of by provider. This gave the user a
way to recover from server problems, or broken content
from a search provider. One special item in this list was a
display of the ten previous queries they had entered. We
did not have specific data on the recurrence of search
queries, but Abrahms indicated that bookmark lists often
contain references to searches.

History
There was strong evidence that improved access to viewed
web pages would help users (Tauscher, L. 1996). The
challenge was to develop a simple way to organize the
large lists of history data that would allow users to quickly
find the specific pages they wanted.

Figure 2. History using the Explorer bar

We started with a simple structure for the history list,
organizing the data chronologically and then by site. This
made it possible for a user to access a site simply by
knowing when they visited, and then walking through the
sites visited on that day. Figure 2 shows the History bar in
use, with the time and site fields visible. In addition, the
history list intelligently groups visited web pages based on
their second level domain name, which would help speed
locating a specific site from a list. We added this feature in
response to watching users struggle to find sites with non-
standard domain names (www1.microsoft.com) in a list
that was alphabetized by the entire URL.

In the second usability study for history, seven
participants with beginner to intermediate level web
experience were given navigation tasks that required
returning to pages previously visited at different time

periods. All of the users were able to complete the
navigation tasks using a combination of the history bar, the
back button, and on occasion some of the navigation
assistance provided by the site’s themselves.

We also designed the history list to act as constant
indicator for where the user is currently located on the web.
By showing the list of web domains, and indicating in the
list where the user was with a gray bar, we were able to
give the user some context for where they were on the web.
In the future we want to measure how effective this
mechanism is for expediting use of the history bar, and in
reducing the user symptom of feeling lost in cyberspace.

To cover cases where a strict chronology was
useless, such as when a user remembers the site they were
on, but not when they went there, we added the ability to
change the history list. A dropdown menu in the history bar
called ‘view’ allows the user to change the ordering to be
sorted by date, by site, by frequency, or by the exact
chronological order each individual pages was visited. To
support scenarios where only text from the page is
remembered, a searching feature is provided that searches
the text of every page the user has visited that is still in the
user’s cache. For any page that has a match, its title is
displayed conveniently in the history bar allowing the user
to easily try out different result hits.

Favorites
The user behavior of navigating through existing

favorites showed many of the same issues as navigating
through a large history list (Abrahms, D. 1997). Even
though the user created the Favorites hierarchy, the larger
the list grew the harder it became to find an individual item.
We used the same general model for Favorites as we had
for History. This made it possible to easily navigate from
one favorite to another, and open or close folders without
losing the current web page in the main window. We also
provided in place organization of favorites: the user could
drag and drop items between folders, add items to favorites,
and remove favorites items while viewing particular web
pages. This was mostly of value to intermediate and
advanced who were familiar with the drag and drop
convention.

Unfortunately, most novice and intermediate users
were not aware that this convention could be used in the
Explorer bar. Nearly half of the 8 beginner and
intermediate users tested on favorites tasks would open the
favorites bar and fail to find a way to create folders or
move items into existing folders. To improve access to
these commands from the Explorer bar, we used a toolbar
strip underneath the title of the explorer bar to display
command buttons.

Figure 3. Favorites using the Explorer bar

We experimented with different visual elements,
and text descriptions using an informal paper prototype
with users of different experience levels. The simple
approach of using the text label for each command was
most effective, provided that the text labels for the
commands would fit in the available space. In the final
design, clicking on the Add button displayed the add to
favorites dialog, and clicking on the organize button
displayed the organize favorites dialog. We verified the
success of these buttons in a smaller usability test after the
toolbar had been added. All of the participants were able to
get to the add and organize dialogs through the Favorites
bar.

Conserving real estate
The explorer bar forced users to choose between

maximizing the screen area for the web page they are
viewing, and maximizing their ability to navigate using the
explorer bar. We experimented with different sized bars,
and found 200 pixels to be a balanced tradeoff between
effective page viewing and web navigation. If we made the
bar larger, many websites could not be viewed easily
without horizontal scrolling. If we made the bar smaller, it
was impossible to view lists of sites without horizontal
scrolling. We knew based on survey data (Pitkow, J 1996)
that the majority of the population that could report
resolution was using 800 by 600 or better screen resolution.
The explorer bar used 200 pixels allowing 600 for page
viewing. Users with larger resolutions would have a full
800 or greater pixel width for web pages. We also made the
explorer bar resizable to allow the user to customize the
size to account for particularly troublesome pages.

To increase the user's control over available real
estate, we provided a mode of the browser called
fullscreen. This removed all secondary menus, status and
cosmetic elements, thereby maximizing the screen real
estate for the content of the page. When in fullscreen mode,
the explorer bar assumes a special behavior called autohide.
The bar slides away off the left edge of the screen. The user
can bring the bar back by moving her mouse to the left
most edge of the screen. The bar then slides back onto the
screen and can be used to navigate the browser to another
page. As soon as the user has clicked on an item, or moved
his mouse away from the bar, the bar slides back off the left

edge of the screen. A toolbar button and a menu command
were provided to toggle in and out of fullscreen mode.

For some tasks, such as moving between multiple search
results or history items, it is useful for the bar to remain
visible even while in fullscreen mode. To enable this, we
added a small pushpin button to the title area of the
explorer bar. This button allowed the user to pin the bar in
place for as long as necessary. When depressed, the bar
would stay visible. If pressed a second time, it would return
to autohide behavior. Figure 5 shows the pushpin button.

Figure 4. Fullscreen mode in Internet Explorer

Figure 5. The pushpin button in fullscreen mode

Activating and closing the bar
There was a conflict between providing a single

user interface element, and making sure that the critical
features of the browser were easily discoverable. We
experimented in sketches with having one toolbar button
for activating the entire set of bars, one button with a drop
down list for each bar, and relying purely on the menus for
activation of each bar. We could not think of one button
label that could describe all of these functions in a way that
would be sensible to users. The best compromise we found
was to allow each function that used the bar to have it’s
own toolbar button. The buttons would be mutually
exclusive of each other, allowing the user to switch from

one bar to another. Each button also acted as a toggle
switch, turning a particular bar on or off.

In usability tests of initial designs we found that
users often had trouble discovering how to close the
explorer bar. Nearly half of the 8 intermediate users failed
on their first few attempts to make the bar go away. They
would complete the task of finding a specific page, but
would not recognize that the active toolbar button in the
toolbar worked as a toggle switch. We reinforced the
discoverability of the toggle behavior by adding a close box
to the title area of the explorer bar. This provided a distinct
visual affordance for closing the bar, and in follow up tests
nearly all participants were able to close the explorer bar.

Problems with the Hierarchy View and
Scrollbars

We examined the standard Windows 95 treeview
control and saw two places where changes might improve
the usability of navigating web pages. Removing the plus
element for opening folders, and changing the limit on the
number of folders allowed to be opened simultaneously.

Since the most common action users applied to a
folder in the Explorer bar was opening or closing, it
followed that the largest visual target on the folder should
provide those actions. The standard treeview design has a
small plus to the left of the folder name that was the only
way to open or close the folder. We modified the treeview
in the Explorer bar so that if a folder name was clicked, it
opened. To select a folder for renaming or deleting, you
needed to right click on it. We removed the plus element to
simplify the treeview and make the most frequent task the
easiest to perform.

Once we had a working prototype of the Favorites
and History bars, we discovered in our own usage that it
was easy to get bogged down in the number of open
folders. The user would either have to manually go back to
close folders they were no longer using, or use the scroll
bar repeatedly to maneuver around them. We accounted for
this by automatically closing unused folders. If the user
opened folder A, and then opened folder B, we would
automatically close folder A for them. This did create some
negative side effects. For advanced users, this behavior
made it more cumbersome to move items from one folder
to another. Since advanced users were the minority, we
decided to default to autoclosing folders. We added a
switch to the program options for advanced users to turn
this feature off.

We needed a user interface element inside the
explorer bar to allow it to scroll. Large lists of bookmarks
are common and cause obvious problems (Abrahms, D
1996). We found that the standard scroll box consumed a
large amount of real estate and was visually unappealing
inside the Explorer bar. We copied the scrolling
affordances used elsewhere in Internet Explorer 4.0’s

toolbars and menus, which provided a simple arrow at the
top and bottom of the list whenever it was necessary.

.
Figure 6. The new scroll bar style

After usability testing, we discovered that this new
scrolling model had many problems. Unlike the standard
scroll bar, this new affordance did now allow for easy
paging of long lists, or for granular control over the pace at
which items were scrolled. We reverted back to using the
standard scroll bar control in version 5.0 of Internet
Explorer.

Usability Testing Summary
Over the course of two versions of Internet Explorer (4.0
and 5.0), 6 different usability studies were conducted on
different aspects of the Explorer bar. In some tests only
specific features were examined, such as favorites or
Search feature, or specific concerns were examined such as
the ability for users to close the explorer bar. In many
instances usability tests for other aspects of the product
touched on Explorer bar issues and provided additional,
though often more anecdotal, information.

Each usability study used from 5 to 10 participants,
depending on the sophistication of the test design. The
studies used a mixture of user backgrounds, ranging from
windows 95 users with beginning web experience (little or
no experience with Internet), to advanced (high experience
with internet). Verbal protocol was used as one of the
primary methods of data collection, except in cases where
we performed benchmarking or performance comparison
tests between two different prototypes. In those cases time
on task and error frequency were the only primary
measures.

Future Applications
After our initial success wth the explorer bar, we

did some limited explorations into potential other uses. We
added the ability to create horizontal explorer bars, than ran
across the top or bottom of the browser. We expected that
communication tasks such as chats or reading news
information would work better in the horizontal form
factor.

The major roadblock to other uses of the explorer

bar is the mutual exclusion rule for each kind of bar
(vertical or horizontal). To keep the interface simple, we
allowed only one vertical explorer bar to be active at any
time. For example, if the Favorites bar is active, and the
user clicks on the History button, the Favorites bar goes
away and is replaced by the History bar. Horizontal bars
follow the same rule when other horizontal bars are
involved. However, the user is allowed to have one vertical
bar and one horizontal bar at the same time. In general,
mutual exclusion was the only design we could think of to
keep turning individual bars on and off from becoming a
complex task. Search, Favorites and History were critical
parts of the user experience and we did not want to
complicate those core functions in the name of enabling
less frequent user tasks.

The vertical bar is most useful for navigation
tasks. Any time the user needs to pick from a list of items,
and move between them frequently, the vertical bar
provides value. The ability to keep a separate context is
likely to help the user stay on task and keep useful context.
Good examples are table of contents lists, troubleshooting
information, or help content. We considered moving
Internet Explorer’s help system to use the explorer bar, but
hit the mutual exclusion problem: you couldn’t view the
help information for the favorites bar, and the actual
favorites bar at the same time. Sitemaps for websites could
work well in an explorer bar as well, provided there were
guidelines or conventions for how sites design them. We
experimented with sitemaps during IE4 but removed the
feature for schedule and other reasons (Berkun, 1996).

We provided the ability for other software
developers to add their own explorer bars to Internet
Explorer. We expected that certain websites that are used as
launching points, such as portals, could use an explorer bar
to speed the user’s access to specific pages or parts of the
portal.

Conclusions
In working on the Explorer bar we recognized four themes:
• There is value in applying the same user interface to

diverse data sets provided the usage patterns for each
are similar.

• Using a large percentage of real estate is acceptable to
users if you are solving an immediate problem and
providing discoverable ways to customize or
deactivate items.

• History can be a very effective tool for web navigation
if you provide users with ways to mine useful data out
of the large pile of history information.

• Standard user interface elements often have been
thoroughly designed. Do not stray from them unless
you have exceptional and well understood reasons.
For example, reusing the standard scroll bar was the
best choice for the Explorer bar. However, in the case
of the treeview, we had strong evidence that something
different was required for the user tasks we were

designing for.

ACKNOWLEDGMENTS
There were many critical people that made this work
possible: Steve Capps, Walter Smith, John Cordell, Chris
Franklin, , Chris Nyman, Gayna Williams, Lisa Sanford,
Shawna Swanson, Jennifer Shetterly, Shawn Murphy and
many others on the Internet Explorer 4.0 and 5.0
development teams. Without the major impact these
individuals had, the Explorer bar concept would never have
been realized.

REFERENCES

Abrahms, D. (1997) Human Factors of Personal Web
Information spaces, MS Thesis, Department of Computer
Science, University of Toronto.
http://www.dgp.toronto.edu/~abrahms

Berkun, S. (1996) Sitemaps in Internet Explorer 4.0,
Microsoft Interactive Developer magazine,
http://www.microsoft.com/Mind/1196/preview1196.htm

Catledge, Lara, Pitkow J, (1995) Characterizing Browsing
strategies in the world-wide web, Third International
World Wide Web Conference, ,
http://www.igd.fhg.de/www/www95/papers/80/userpattern
s/UserPatterns.Paper4.formatted.html

Dennis E. Egan, Joel R. Remde, Louis M. Gomez, Thomas

K. Landauer, Jennifer Eberhardt and Carol C.
Lochbaum, Formative Design-Evaluation of
SuperBook, ACM Transactions on Information Systems,
Research Contributions, vol. 7, no. 1, 1989, pp. 30-57.

Gloor, Peter A. (1997), Elements of Hypermedia Design:
Techniques for Navigation and Visualization in
Cyberspace, Birkhauser publishing

Horn, Robert (1990) Mapping hypertext: The analysis,
organization and display of knowledge for the next
generation of on-line text and graphics, Lexington
Publishing

Nielsen, J. (1996) Multimedia and Hypertext AP
Professional, Cambridge, MA 02139

Pitkow, J (1996) GVU’s 5th WWW User survey.
http://www.cc.gatech.edu/gvu/user_surveys/survey-04-
1996

Tauscher, L. (1996). Evaluating history mechanisms: An
empirical study of reuse patterns in World Wide Web
navigation. MSc Thesis, Department of Computer
Science, University of Calgary, Alberta, Canada.
http://www.cpsc.ucalgary.ca/grouplab/papers/

 Tauschler L. and Greenberg, S. (1997) How people revisit
web pages: Empirical Findings and Implications for the
design of History systems. Int Journal of Human
Computer Studies, 47(1),95-138

Wurman, Richard. (1989) Information Anxiety

